קיימת קבוצה שלמה של חומרים, או תרופות, המעסיקה פלח קטן אך גדל של האוכלוסיה, ואלה קרויים נואוטרופים Nootropics .
הם מוכרים גם כ"תרופות חכמות", מגדילי או מרחיבי זכרון, מגדילים נאורולוגים, מגדילי או מרחיבי קוגניציה או אינטליגנציה smart drugs, memory enhancers, neuro enhancers, cognitive enhancers, intelligence enhancers.
אלה תרופות או סמים, תוספי מזון nutraceuticals, ומזונות פונקציונליים functional foods (מזונות ולהם תכונה ביולוגית) המשפרים אחד או יותר מתיפקודי המוח. כגון זכרון עבודה, קשב, ועוד.
מקור השם מן היוונית: νους (מבוטא נואוס) שזה בערך תודעה, ו τρέπειν (המבוטא טרפאין) שזה להפוך, או לשנות.
מעט חומרים ידועים כבעלי השפעה על הקוגניציה, המוכרים והנפוצים ביותר לכולנו הם הקפאין, התאין שבתה, והניקוטין שבסיגריות.
חומרים אחרים אינם נגישים כל כך לציבור הרחב והם חומרים פסיכואקטיביים המשמשים לטיפול בהפרעות קשב וריכוז, אלצהיימר, מחלות מערכת העצבים כגון פרקינסון, מחלת האנטינגטון ודומים. ביניהם ריטלין ששייך לאמפטמינים Amphetamines , וחומרים דומים המוכרים כמעוררים (ספידים או "אפרים" uppers ), אמפקינים Ampakines, המרחיבים קשב, יוגרואים Eugeroics שהם מגבירי ערנות, פרקורסורים של דופאמין Dopamine precursors, אפדרין Ephedrine, שמקורו ברפואת צמחי המרפא הסינית ונמצא למשל בתרופות נגד שיעול, MDMA המוכר בשמו העממי כאקסטזי ecstasy, ועוד, כגון MDPV, Prolintane, Mephedrone, Methamphetamine, levomethamphetamine, Phenylpropanolamine, Propylhexedrine, Dimethylamylamine, Pseudoephedrine, Catha edulis (Khat) צמח הגת של התימנים, ו- Cocaine .קוקאין
במחקרים שונים נמצא כי החומרים הפועלים כמרחיבי קוגניציה פועלים כאגוניסטים ישירים או עקיפים על שני קולטנים במוח: dopamine receptor D1, adrenoceptor A2, בקורטקס הפרה- פרונטלי prefrontal cortex.
אמפטמינים ו Methylphenidate משפרים בקרה קוגניטיבית, זכרון עבודה וכו')
יוגרואים ממעודדים ערנות ומסייעים בחשיבה לוגית ופתרון בעיות,
קסנטינים ובעיקר קפאין מעודדים ערנות ובמקרים מסוימים זכרון,
ניקוטין משפר מוטוריקה עדינה ערנות, התמצאות במרחב וזכרון עבודה
Bacopa monnieri , צמח המוכר ברפואת האיורוודה ההודית בשם Brahmi משפר זכרון,
שורש הג'ינסנג Panax ginseng, שמקורו ברפואה הסינית והמוכר בשפתם בשם ren shen מסייע כנראה לקוגניציה ועל כן באלצהיימר, משפר יכולת פתרון בעיות מתמטיות, ומשפר מצב רוח,
על המרווה הרפואית Salvia officinalis נטען כי היא משפרת קוגניציה,
גינקו בילובה Ginkgo biloba אמור לשפר קשב, תיפקודי ניהול מוחיים וזכרון לטווח ארוך.
כך נטען גם לגבי פטריות פסיכודליות ( psilocybin), מסקאלין Mescaline, איוואסקה Ayahuasca ואל-אס-די LSD/.
למותר לציין כי מדיטציה נחשבת (כמובן) כנואוטרופית, והיא מרחיבת תודעה ותיפקודים מנטליים שהוכחה במחקרים רבים. (יש כאלה, אשר בניגוד למסורות המזרח הבודהיסטיות וההינדיות, המשלבים בין מדיטציה וצמחים נואוטרופים כגון פטריות, או Bacopa ההודי)
לאחרונה התפרסם בארץ מאמרו של פרופ' יוסי חביב, מנהל המחלקה הנפרולוגית במרכז הרפואי האוניברסיטאי סורוקה, על חלבון בשם קלותו Klotho , המיוצר בכליה, ואשר מעכב תהליכי הזדקנות, אבל בנוסף לכך, הוא משפר יכולות זכרון ולמידה וקשור בתיפקוד קוגניטיבי משופר, כלומר, פעילותו דומה לחומרים נואוטרופיים Nootropics . והדרך להשפיע על רמתו של חלבון הקלותו הוא באמצעות נטילת ויטמין די VITAMIN D., צריכת ligustilide הקיים בצמח האנג'ליקה הידוע בשמו הסיני דונג קוואי – Dong Quai, החומר resveratrol המצוי בקליפות ענבים (אך לא ביין), אוכמניות blueberries, פֶּטֶל raspberries ותות–עץ mulberries. והחומר Pterostilbene הקיים בשקדים, גַּרְגְּרֵי יַעַר כגון חמוציות cranberry, אוכמניות blueberry, bilberry, lingonberry , cowberry, huckleberry, ועלי גפן .
בקיצור- תתחילו לחפש מה לקחת, ולעשות מדיטציה.
למקורות :
מקורות
"Dorlands Medical Dictionary". Archived from the originalon January 30, 2008.
- Lanni C, Lenzken SC, Pascale A, et al. (March 2008). "Cognition enhancers between treating and doping the mind". Pharmacol. Res. 57 (3): 196–213.doi:1016/j.phrs.2008.02.004. PMID 18353672.
- Gazzaniga, Michael S. (2006). The Ethical Brain: The Science of Our Moral Dilemmas (P.S.). New York, N.Y: Harper Perennial. p. 184. ISBN 0-06-088473-8.
- Giurgea C (1972). "[Pharmacology of integrative activity of the brain. Attempt at nootropic concept in psychopharmacology] ("Vers une pharmacologie de l'active integrative du cerveau: Tentative du concept nootrope en psychopharmacologie")". Actual Pharmacol (Paris) (in French) 25: 115–56. PMID 4541214.
- "nootropicTranslation". Retrieved October 6, 2014.
- ^ Sahakian B; Morein-Zamir S (December 2007). "Professor's little helper". Nature450 (7173): 1157–9. Bibcode:450.1157S. doi:10.1038/4501157a.PMID 18097378.
- Greely, Henry; Sahakian, Barbara; Harris, John; Kessler, Ronald C.; Gazzaniga, Michael; Campbell, Philip; Farah, Martha J. (December 10, 2008). "Towards responsible use of cognitive-enhancing drugs by the healthy". Nature (Nature Publishing Group) 456(7223): 702–705. Bibcode:456..702G. doi:10.1038/456702a. ISSN 1476-4687. OCLC 01586310. PMID 19060880. Retrieved March 25, 2014. (subscription required (help)).
- "Smart Drugs and Should We Take Them?". Dolan DNA Learning Center. RetrievedNovember 4, 2012.
- "Dietary Supplements: What You Need to Know". US Food and Drug Administration. Retrieved February 14, 2015.
- McCabe, Sean Esteban; Knight, John R.; Teter, Christian J.; Wechsler, Henry (January 1, 2005). "Non-medical use of prescription stimulants among US college students: prevalence and correlates from a national survey". Addiction 100 (1): 96–106.doi:1111/j.1360-0443.2005.00944.x. PMID 15598197. Retrieved August 15, 2013.
- ^ Sattler, S.; Sauer, C.; Mehlkop, G.; Graeff, P. (2013). "The Rationale for Consuming Cognitive Enhancement Drugs in University Students and Teachers". PLoS ONE 8 (7): e68821. doi:1371/journal.pone.0068821.
- ^ Sattler, Sebastian; Wiegel, Constantin (February 25, 2013). "Cognitive Test Anxiety and Cognitive Enhancement: The Influence of Students’ Worries on Their Use of Performance-Enhancing Drugs". Substance Use & Misuse (Informa Healthcare New York) 48 (3): 220–232. doi:3109/10826084.2012.751426. Retrieved April 5, 2014.
- Bossaer, John. "The Use and Misuse of Prescription Stimulants as "Cognitive Enhancers" by Students at One Academic Health Sciences Center". Academic Medicine. RetrievedOctober 6, 2014. Overall, 11.3% of responders admitted to misusing prescription stimulants. There was more misuse by respiratory therapy students, although this was not statistically significant (10.9% medicine, 9.7% pharmacy, 26.3% respiratory therapy; P = .087). Reasons for prescription stimulant misuse included to enhance alertness/energy (65.9%), to improve academic performance (56.7%), to experiment (18.2%), and to use recreationally/get high (4.5%).
- Teter CJ, McCabe SE, LaGrange K, Cranford JA, Boyd CJ (October 2006). "Illicit use of specific prescription stimulants among college students: prevalence, motives, and routes of administration". Pharmacotherapy 26 (10): 1501–1510.doi:1592/phco.26.10.1501. PMC 1794223. PMID 16999660.
- Weyandt LL, Oster DR, Marraccini ME, Gudmundsdottir BG, Munro BA, Zavras BM, Kuhar B (September 2014). "Pharmacological interventions for adolescents and adults with ADHD: stimulant and nonstimulant medications and misuse of prescription stimulants".Psychol. Res. Behav. Manag. 7: 223–249. doi:2147/PRBM.S47013.PMC 4164338. PMID 25228824. misuse of prescription stimulants has become a serious problem on college campuses across the US and has been recently documented in other countries as well. … Indeed, large numbers of students claim to have engaged in the nonmedical use of prescription stimulants, which is reflected in lifetime prevalence rates of prescription stimulant misuse ranging from 5% to nearly 34% of students.
- Clemow DB, Walker DJ (September 2014). "The potential for misuse and abuse of medications in ADHD: a review". Postgrad. Med. 126 (5): 64–81.doi:3810/pgm.2014.09.2801. PMID 25295651. Overall, the data suggest that ADHD medication misuse and diversion are common health care problems for stimulant medications, with the prevalence believed to be approximately 5% to 10% of high school students and 5% to 35% of college students, depending on the study.
- Sattler, Sebastian; Mehlkop, Guido; Graeff, Peter; Sauer, Carsten (February 1, 2014)."Evaluating the drivers of and obstacles to the willingness to use cognitive enhancement drugs: the influence of drug characteristics, social environment, and personal characteristics". Substance Abuse Treatment, Prevention, and Policy. BioMed Central Ltd. p. 8. doi:1186/1747-597X-9-8. ISSN 1747-597X. Retrieved April 5, 2014.
- Sattler, Sebastian; Forlini, Cynthia; Racine, Éric; Sauer, Carsten (August 5, 2013)."Impact of Contextual Factors and Substance Characteristics on Perspectives toward Cognitive Enhancement". PLOS ONE (PLOS) 8 (8): e71452.doi:1371/journal.pone.0071452. ISSN 1932-6203. LCCN 2006214532.OCLC 228234657. Retrieved April 5, 2014.
- Malykh AG, Sadaie MR (February 2010). "Piracetam and piracetam-like drugs: from basic science to novel clinical applications to CNS disorders". Drugs 70 (3): 287–312.doi:2165/11319230-000000000-00000. PMID 20166767.
- Gouliaev AH, Senning A (May 1994). "Piracetam and other structurally related nootropics". Brain Res. Brain Res. Rev. 19 (2): 180–222. doi:1016/0165-0173(94)90011-6. PMID 8061686.
- Noble KA (December 2012). "Brain gain: adolescent use of stimulants for achievement".J. Perianesth. Nurs. 27 (6): 415–9. doi:1016/j.jopan.2012.09.001.PMID 23164208.
- Stolerman IP (2010). Stolerman IP, ed. Encyclopedia of Psychopharmacology. Berlin; London: Springer. p. 78. ISBN 9783540686989.
- Millichap JG (2010). "Chapter 3: Medications for ADHD". In Millichap JG. Attention Deficit Hyperactivity Disorder Handbook: A Physician's Guide to ADHD (2nd ed.). New York: Springer. pp. 121–123. ISBN 9781441913968.
- Huang YS, Tsai MH (July 2011). "Long-term outcomes with medications for attention-deficit hyperactivity disorder: current status of knowledge". CNS Drugs 25 (7): 539–554.doi:2165/11589380-000000000-00000. PMID 21699268.
- Spencer RC, Devilbiss DM, Berridge CW (June 2015). "The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex". Biol. Psychiatry 77(11): 940–950. doi:1016/j.biopsych.2014.09.013. PMID 25499957.The procognitive actions of psychostimulants are only associated with low doses. Surprisingly, despite nearly 80 years of clinical use, the neurobiology of the procognitive actions of psychostimulants has only recently been systematically investigated. Findings from this research unambiguously demonstrate that the cognition-enhancing effects of psychostimulants involve the preferential elevation of catecholamines in the PFC and the subsequent activation of norepinephrine α2 and dopamine D1 receptors. … This differential modulation of PFC-dependent processes across dose appears associated with the differential involvement of noradrenergic α2 versus α1 receptors. Collectively, this evidence indicates that at low, clinically relevant doses, psychostimulants are devoid of the behavioral and neurochemical actions that define this class of drugs and instead act largely as cognitive enhancers (improving PFC-dependent function). This information has potentially important clinical implications as well as relevance for public health policy regarding the widespread clinical use of psychostimulants and for the development of novel pharmacologic treatments for attention-deficit/hyperactivity disorder and other conditions associated with PFC dysregulation.
- Goldman P (2001). "Herbal medicines today and the roots of modern pharmacology".Annals of Internal Medicine 135 (8 Pt 1): 594–600. doi:7326/0003-4819-135-8_Part_1-200110160-00010. PMID 11601931.
- Ilieva IP, Hook CJ, Farah MJ (January 2015). "Prescription Stimulants' Effects on Healthy Inhibitory Control, Working Memory, and Episodic Memory: A Meta-analysis". J. Cogn. Neurosci.: 1–21. doi:1162/jocn_a_00776. PMID25591060. The present meta-analysis was conducted to estimate the magnitude of the effects of methylphenidate and amphetamine on cognitive functions central to academic and occupational functioning, including inhibitory control, working memory, short-term episodic memory, and delayed episodic memory. In addition, we examined the evidence for publication bias. Forty-eight studies (total of 1,409 participants) were included in the analyses. We found evidence for small but significant stimulant enhancement effects on inhibitory control and short-term episodic memory. Small effects on working memory reached significance, based on one of our two analytical approaches. Effects on delayed episodic memory were medium in size. However, because the effects on long-term and working memory were qualified by evidence for publication bias, we conclude that the effect of amphetamine and methylphenidate on the examined facets of healthy cognition is probably modest overall. In some situations, a small advantage may be valuable, although it is also possible that healthy users resort to stimulants to enhance their energy and motivation more than their cognition. … Earlier research has failed to distinguish whether stimulants’ effects are small or whether they are nonexistent (Ilieva et al., 2013; Smith & Farah, 2011). The present findings supported generally small effects of amphetamine and methylphenidate on executive function and memory. Specifically, in a set of experiments limited to high-quality designs, we found significant enhancement of several cognitive abilities. …
The results of this meta-analysis cannot address the important issues of individual differences in stimulant effects or the role of motivational enhancement in helping perform academic or occupational tasks. However, they do confirm the reality of cognitive enhancing effects for normal healthy adults in general, while also indicating that these effects are modest in size. - Bagot KS, Kaminer Y (April 2014). "Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review".Addiction 109(4): 547–557. doi:1111/add.12460. PMID 24749160.
- Wood S, Sage JR, Shuman T, Anagnostaras SG (January 2014). "Psychostimulants and cognition: a continuum of behavioral and cognitive activation".Pharmacol. Rev. 66(1): 193–221. doi:1124/pr.112.007054. PMID 24344115.
- Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 13: Higher Cognitive Function and Behavioral Control". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 318.ISBN9780071481274. Mild dopaminergic stimulation of the prefrontal cortex enhances working memory. …
Therapeutic (relatively low) doses of psychostimulants, such as methylphenidate and amphetamine, improve performance on working memory tasks both in in normal subjects and those with ADHD. Positron emission tomography (PET) demonstrates that methylphenidate decreases regional cerebral blood flow in the doroslateral prefrontal cortex and posterior parietal cortex while improving performance of a spacial working memory task. This suggests that cortical networks that normally process spatial working memory become more efficient in response to the drug. … [It] is now believed that dopamine and norepinephrine, but not serotonin, produce the beneficial effects of stimulants on working memory. At abused (relatively high) doses, stimulants can interfere with working memory and cognitive control … stimulants act not only on working memory function, but also on general levels of arousal and, within the nucleus accumbens, improve the saliency of tasks. Thus, stimulants improve performance on effortful but tedious tasks … through indirect stimulation of dopamine and norepinephrine receptors. - Linssen AM, Sambeth A, Vuurman EF, Riedel WJ (June 2014). "Cognitive effects of methylphenidate in healthy volunteers: a review of single dose studies". Int. J. Neuropsychopharmacol. 17 (6): 961–977. doi:1017/S1461145713001594.PMID 24423151. The studies reviewed here show that single doses of MPH improve cognitive performance in the healthy population in the domains of working memory (65% of included studies) and speed of processing (48%), and to a lesser extent may also improve verbal learning and memory (31%), attention and vigilance (29%) and reasoning and problem solving (18%), but does not have an effect on visual learning and memory. MPH effects are dose-dependent and the dose-response relationship differs between cognitive domains.
- Urban, KR; Gao, WJ (2014). "Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain.".Frontiers in systems neuroscience 8: 38. doi:3389/fnsys.2014.00038.PMID 24860437.
- Huurne, Niels ter; Fallon, Sean James; Schouwenburg, Martine van; Schaaf, Marieke van der; Buitelaar, Jan; Jensen, Ole; Cools, Roshan (2015-09-09). "Methylphenidate alters selective attention by amplifying salience". Psychopharmacology 232 (23): 4317–4323.doi:1007/s00213-015-4059-y. ISSN 0033-3158.
- Mereu M, Bonci A, Newman AH, Tanda G (October 2013). "The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders". Psychopharmacology (Berl.) 229 (3): 415–34. doi:1007/s00213-013-3232-4. PMID 23934211.
- "Modafinil". MedlinePlus. Retrieved August 19, 2014.
- Rogers, P. (2007). "Caffeine, mood and mental performance in everyday life".Psychology Today 32 (1): 84–89. doi:1111/j.1467-3010.2007.00607.x.
- Kiefer, I. (2007). "Brain Food". Scientific American Mind 18 (5): 58–63.doi:1038/scientificamericanmind1007-58. Retrieved November 1, 2009.
- Camfield DA, Stough C, Farrimond J, Scholey AB (2014). "Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis". Nutr. Rev. 72(8): 507–22.doi:1111/nure.12120. PMID 24946991.
- Heishman SJ, Kleykamp BA, Singleton EG (June 2010). "Meta-analysis of the acute effects of nicotine and smoking on human performance". Psychopharmacology (Berl).210 (4): 453–69. doi:1007/s00213-010-1848-1. PMC 3151730. PMID 20414766. Retrieved March 23, 2012.
- Gillies D, Sinn JKh, Lad SS, Leach MJ, Ross MJ (2012). "Polyunsaturated fatty acids (PUFA) for attention deficit hyperactivity disorder (ADHD) in children and adolescents".Cochrane Database Syst Rev 7: CD007986. doi:1002/14651858.CD007986.pub2.PMID 22786509.
- Tan ML, Ho JJ, Teh KH (2012). "Polyunsaturated fatty acids (PUFAs) for children with specific learning disorders". Cochrane Database Syst Rev 12: CD009398.doi:1002/14651858.CD009398.pub2. PMID 23235675.
- McEwen BS, Chattarji S, Diamond DM, Jay TM, Reagan LP, Svenningsson P, Fuchs E (March 2010). "The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation". Mol. Psychiatry 15(3): 237–49.doi:1038/mp.2009.80. PMC 2902200. PMID 19704408. Cognitive deficits, such as an impairment of attention, memory and problem solving, have often been reported in patients with depressive disorders (69). Cognitive deficits and memory impairments in patients with depression may arise via disruption of the hypothalamic-pituitary adrenal (HPA) axis through hippocampal volume loss and changes in the amygdala. The magnitude of the hippocampal shrinkage reported in certain experimental conditions may partly underlie some of cognitive deficits that accompany major depression. Conversely, any prevention or restoration of these morphological changes in the hippocampus should be parallel to procognitive/promnesiant effects. Accordingly, tianeptine has particularly favorable effects on cognitive functions and the positive effect of tianeptine may be mediated through its upregulation of neurogenesis, but of course, the impact of neurogenesis on cognitive functions remains a matter of controversial debate.
Tianeptine prevents and reverses stress-induced glucocorticoid-mediated dendritic remodeling in CA3 pyramidal neurons in the hippocampus (40,41) and stress-induced increases in dendritic length and branching in the amygdala (50). Tianeptine blocks the dendritic remodeling caused by stress or glucocorticoids (41), blocks stress-induced impairments of spatial memory performance in radial and Y-maze (70,71) and antagonizes the deleterious effects of alcohol (72).
In a validated model of hippocampal-dependent memory impairment and synaptic plasticity changes by predator stress, acute tianeptine can prevent the deleterious effects of stress on spatial memory, an effect that does not depend on corticosterone levels (73). Tianeptine also facilitates focused attention behavior in the cat in response to its environment or towards a significant stimulus (74). It was shown to exert improving effects on learning as well as on working memory and on reference memory in rodents (72) and to exhibit vigilance-enhancing effects in rats (75) and monkeys (76)… - Gervain Judit, Vines Bradley W., Chen Lawrence M., Seo Rubo J, Hensch Takao K., Werker Janet F, Young Allan H (2013). "Valproate reopens critical-period learning of absolute pitch". Frontiers in Systems Neuroscience 7 (00102).doi:3389/fnsys.2013.00102. PMC 3848041. PMID 24348349.
- Aguiar S, Borowski T (August 2013). "Neuropharmacological review of the nootropic herb Bacopa monnieri". Rejuvenation Res 16 (4): 313–26. doi:1089/rej.2013.1431.PMC 3746283. PMID 23772955.
- Pase MP, Kean J, Sarris J, Neale C, Scholey AB, Stough C (July 2012). "The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials". J Altern Complement Med 18 (7): 647–52.doi:1089/acm.2011.0367. PMID 22747190.
- Geng J, Dong J, Ni H, Lee MS, Wu T, Jiang K, Wang G, Zhou AL, Malouf R (2010). "Ginseng for cognition". Cochrane Database Syst Rev (12): CD007769.doi:1002/14651858.CD007769.pub2. PMID 21154383.
- "Asian Ginseng | NCCIH".
- Kennedy DO, Wightman EL (January 2011). "Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function". Adv Nutr. 2 (1): 32–50. doi:3945/an.110.000117. PMC 3042794. PMID
- Miroddi M, Navarra M, Quattropani MC, Calapai F, Gangemi S, Calapai G (2014). "Systematic review of clinical trials assessing pharmacological properties of Salvia species on memory, cognitive impairment and Alzheimer's disease". CNS Neurosci Ther(Systematic review) 20 (6): 485–95. doi:1111/cns.12270. PMID 24836739.Unfortunately, promising beneficial effects showed in clinical studies are debased by methodological issues
- Birks, J; Grimley Evans, J (January 21, 2009). "Ginkgo biloba for cognitive impairment and dementia.". The Cochrane database of systematic reviews (1): CD003120.doi:1002/14651858.CD003120.pub3. PMID 19160216.
- Kaschel R (2009). "Ginkgo biloba: specificity of neuropsychological improvement—a selective review in search of differential effects". Hum Psychopharmacol 24 (5): 345–70.doi:1002/hup.1037. PMID 19551805.
- Malenka RC, Nestler EJ, Hyman SE (2009). Sydor A, Brown RY, ed. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 454. ISBN 9780071481274.
- Gualtieri F, Manetti D, Romanelli MN, Ghelardini C (2002). "Design and study of piracetam-like nootropics, controversial members of the problematic class of cognition-enhancing drugs". Curr. Pharm. Des. 8 (2): 125–38. doi:2174/1381612023396582.PMID 11812254.
- Langcake, P.; Pryce, R. J. (1977). "A new class of phytoalexins from grapevines". Experientia 33(2): 151–2.doi:1007/BF02124034. PMID 844529.
- Xie L, Bolling BW (2014). "Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC-MS". Food Chem 148 (Apr 1): 300–6. doi:1016/j.foodchem.2013.10.057. PMID 24262561.
- Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004). "Resveratrol, pterostilbene, and piceatannol in vaccinium berries". J Agric Food Chem 52 (15): 4713–9. doi:1021/jf040095e. PMID 15264904.
- Becker L, Carré V, Poutaraud A, Merdinoglu D, Chaimbault P (2014). "MALDI mass spectrometry imaging for the simultaneous location of resveratrol, pterostilbene and viniferins on grapevine leaves". Molecules 19 (7): 10587–600. doi:3390/molecules190710587.PMID 25050857.
- Adrian, P. Jeandet, A. C. Breuil, D. Levite, S. Debord and R. Bessis (2000). "Assay of Resveratrol and Derivative Stilbenes in Wines by Direct Injection High Performance Liquid Chromatography". Am J Enol Vitic 51 (1): 37–41.
- Poulose SM, Thangthaeng N, Miller MG, Shukitt-Hale B (2015). "Effects of pterostilbene and resveratrol on brain and behavior". Neurochem Int. (in press): 227–33.doi:1016/j.neuint.2015.07.017. PMID 26212523.
- "Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness."Journal of Psychopharmacology 25.11 (2011): 1453-1461.
- http://www.ncbi.nlm.nih.gov/pubmed/21982274
- http://www.researchgate.net/publication/5309222_Klotho_is_a_target_gene_of_PPAR-gamma
